

 1 Copyright © 2013 by ASME

Proceedings of the ASME 2013 International Design Engineering Technical Conferences &
 Computers and Information in Engineering Conference

IDETC/CIE 2013
August 4-7, 2013, Portland, Oregon, USA

DETC2013-13708
TOWARDS AN APPROACH FOR EVALUATING THE QUALITY OF REQUIREMENTS

Faisal Mokammel, Eric Coatanea, Francois Christophe, Mohamed Ba Khouya, Galina Medyna
Department of Engineering Design and Production

Aalto University School of Engineering
Espoo, Finland

ABSTRACT
 In engineering design, the needs of stakeholders are
often captured and expressed in natural language (NL). While
this facilitates such tasks as sharing information with non-
specialists, there are several associated problems including
ambiguity, incompleteness, understandability, and testability.
Traditionally, these issues were managed through tedious
procedures such as reading requirements documents and
looking for errors, but new approaches are being developed to
assist designers in collecting, analysing, and clarifying
requirements. The quality of the end-product is strongly related
to the clarity of requirements and, thus, requirements should be
managed carefully. This paper proposes to combine diverse
requirements quality measures found from literature. These
metrics are coherently integrated in a single software tool. This
paper also proposes a new metric for clustering requirements
based on their similarity to increase the quality of requirement
model. The proposed methodology is tested on a case study and
results show that this tool provides designers with insight on
the quality of individual requirements as well as with a holistic
assessment of the entire set of requirements.

1. INTRODUCTION
 Requirements management for complex systems and
the understanding of potential emerging impacts of
requirements on the final product are two important areas of
focus for many companies and institutions. A lack of
requirements for describing the needs for a technical system
can have negative consequences during a development project
and there is ample evidence that product developments have
failed due to poorly understood requirements [1]. Unclear or
incomplete set of requirements can be the cause of harmful
design decisions leading to the development of unreliable and
non-functional systems, unnecessary increases in costs,
development time, and significant quality problems.
Linguistic techniques play an important role in quality grade
analysis as requirements models are often entirely or for a
major part expressed in natural language. Requirements
Engineering and Natural Language Processing of requirements

are fields that have emerged from Software Engineering.
Nevertheless, methodologies addressing the same issue have
also recently emerged in other disciplines such as engineering
design [1, 2]. Most methodologies reviewed in this paper tend
to consider only parts of the linguistic aspects and propose
metrics of requirements quality regarding to these particular
aspects. Therefore, there is a need to develop an integrative
approach associating the different metrics from literature in
order to improve the completeness of the coverage of the
quality analysis of requirements.

This paper presents a combined methodology for
evaluating the quality grade of requirements, combining lexical
(i.e. domain specific indexed keywords in the requirements
statement), syntactical (i.e. structure of the requirements
statement), and semantic (i.e. meaning of the requirements
statement) approaches. This methodology combines 18 quality
grade metrics, assessing the expressiveness, consistency, and
completeness of requirements models [2, 3, 4, 5, 6].

 Along with existing methodologies, this paper proposes a
new methodology for clustering automatically requirements
based on the common issues they address. This is done by first
filtering out non specific words (filtering out parts of speech,
such as e.g. articles) and then measuring similarity [7] between
requirements represented as lists of keywords. This clustering
measure helps increasing the quality of requirements models by
automatically placing requirements in proper categories. A case
study considering different levels of requirements abstraction
and classification (i.e. operational, capability, and system level
requirements) is used to illustrate the proposed methodology.

2. RELATED WORK
 The quality of requirements plays a major role in the
development process of products and services [5] and the
related domain has produced quite a large body of literature. As
stated in [2], there are mainly three approaches for assessing
requirements: inductive, restrictive or analytic approaches.
Inductive techniques are not considered in this paper as their
practical application is rather limited due to the fact that they

 2 Copyright © 2013 by ASME

are mostly composed of recommendations in styles for writing
requirements. The main objective of this paper is to combine
restrictive [3] and analytic [2] approaches in order to obtain a
broader viewpoint on the quality of requirements documents.

In relation to the present work, the work developed in QuARS
project [2] on analytically measuring vagueness, subjectivity,
optionality, readability, implicity, weakness, under-
specification, multiplicity of requirements should be
mentioned. In [2], indicators of the quality of requirements are
defined as follows:

Ambiguity Indicators:

1. Vagueness: When parts of the requirements
sentence are inherently vague. The use of vague
words (e.g., easy, strong, good, bad, useful,
significant, adequate, recent).

2. Subjectivity: When requirements sentences
contain words used to express personal opinions
of feelings, The use of subjective words (e.g.,
similar, similarly, having in mind, take into
account, as [adjective] as possible).

3. Optionality: When the requirements sentence
contains an optional part (i.e., a part that can or
cannot considered) The use of words that convey
an option (e.g., possibly, eventually, in case of, if
possible, if appropriate, in needed).

4. Implicity: When the subject of object of a
requirements sentence is generically expressed.
The use of sentence subjects of complements
expressed by demonstrative adjective (e.g., this,
these, that, those) or pronouns (e.g, it, they). The
use of terms that have the determiner expressed
by a demonstrative adjective (e,g., this, these, that
those), implicit adjective (e.g., previous, next,
following, last), or preposition (e.g., above,
below).

5. Weakness: The use of weak verbs (i.e. could,
might, may) in the requirements sentence.

Specification Completion Indicators:

6. Under Specification: When a sentence contains a
word identifying a class of objects without a
modifier specifying and instance of this class. The
use of words that need to be instantiated (i.e., flow
[data flow, control flow], access [write access,
remote access, authorized access, testing
[functional testing, structural testing, unit
testing]]).

Understability Indicators:

7. Multiplicity: When a sentence has more than one
main verb or more than one subject. The use of

multiple subjects, objects, or verbs, which
suggests there are actually multiple requirements.

8. Readability: The readability of sentence is
measured by the Coleman-Liau Formula of
readability metrics (5.89*chars/wds-
0.3*sentences/(100*wds)-15.8). The reference
value of this formula for an easy-to-read technical
documents is 10. If the value is greater than 15,
the document is difficult to read.

Moreover, the work of Lamar [3] is also of interest as it adopts
a restrictive approach based on patterns of sentences for
classifying requirements into functional and non-functional
categories. In [3], these patterns are defined as such:

1. Completeness: The linguistic structure for general
requirements is as follows: <requirement>::
<subject>”modal” <verb phase>

2. Functional Requirements: The linguistic structure
for functional requirements is as follows.

 Constraints Functions: The constraint function
 is linking a part of the system to develop with one and
 only one element of its environment.

 <Functional Requirement>::= <Subject> <Modal>
 <Intransitive verb>{<adjunct>}.
 Example: The airplane seat must float.

 Technical functions: The technical function is linking
 a part of the system to develop with two elements of
 its environment.

 <Functional Requirements>::= <Subject > <Modal>
 <Transitive verb> <Direct Object>{<adjunct>}

 <Functional Requirements>::= <Subject > <Modal>
 <Linking verb> <Participle Complement>{<adjunct>}

 Example: The seat must prevent injury.

3. Non-Functional Requirements: The linguistic
structure of the sentence permits to detect non-
functional requirements.
<Non-Functional Requirements>::= <Subject>
<Modal> <Linking verb> <Adjective
Complement>{<adjunct>}
Example: The seat must be easy to adjust.

Besides the different metrics found during state of the art
research and integrated in the proposed approach, new quality
grade metrics were also developed to cover lexical and
semantic aspects, two aspects not covered by previous research
works. These metrics are presented in the second part of the
methodology section below.

Previously we developed in our research, a methodology for
clarifying requirements [6] based on syntactic, lexical and
semantic aspects. Commercial software, such as a special

 3 Copyright © 2013 by ASME

support module developed for Rational DOORS [8], also
propose metrics, which are not ingrate the state of the art.
Instead of integrating the requirement quality metrics, details of
requirement language processing aspect also cover in previous
research work [9].
 Existing requirements quality metrics found in
literature are classified into different categories that take into
account the viewpoints of the related analysis as shown Table 1.
The QuARS project [2] proposes a point of view centred on

understandability aspects of requirements grouped under the
category of expressiveness. The present research work has
taken the viewpoint of analysing the redundancies between the
metrics proposed in the different research works from literature
in order to integrate them coherently in a prototype software
tool.

Table 1 Overview of the metrics considered and implemented in the prototype software

Source of the
metrics

Matrices
Developed in
literature and
in this work

Quality criteria of the language assessed Element of the language
assessed

Expressiveness Consistency Completeness Lexical Syntactical Sema
ntic

Unambiguity Understandability Specific
Completion

QuARS
Lami, 2005]

Vagueness X X
Subjectivity X X
Optionality X X

Implicity X X
Weakness X X

Under-
specification

 X X

Multiplicity X X
Readability X X

[Lamar,
2009]

Completeness X X X

[Christiophe
et al., 2012]

REfinement X X X x
ROM X X X

ROM Questions X X X X X
Other

existing
metrics

(Commercial
software)

Acronyms X X
Abuse of

connector
 X

Size X X
Domain specific

ambiguous
Stop verb list

X X X

Speculative
sentence

X X

Volatility X
Made By

Graph
(Proposed in
this paper)

Similarity X
Domain specific

ambiguous
Stop verb list

 X

3. METHODOLOGY
In the literature [5] different levels of analysis for the quality
evaluation of requirements are considered, namely syntactic,
lexical, and semantic levels. Based on this viewpoint, it is
possible to classify the quality grade metrics from literature
according to the aspects of language they address, as
represented in Table 1. Later on this table is used as a template

for measuring the quality grade of requirements. Table 1
summarizes:

1- The different metrics (from literature) integrated in the
software platform,

2- The research works describing these metrics (N.B. Made
By Graph is the name of the project financing this work),
The quality criteria (Expressiveness, Consistency,

 4 Copyright © 2013 by ASME

Completeness) used to represent the understandability of
the requirements by other stakeholders.

3- The elements of the part of language (Lexical, Syntactical,
Semantic) assessed by the different metrics.

Figure 1 Architecture of the software tool developed

Description of software tools and integration of the quality
metrics:

The proposed approach integrating different metrics of
requirements quality has been implemented in a software tool
as described in Figure 1. The developed software works as
follows:

1. Process and Read XML File: The developed
prototype reads SysML or DOORS requirement files
provided as input. This provides flexibility of use of
our developed software tools with existing
requirement management tools.

2. Parsing Requirement Sentences: After processing and
reading XML files (from DOORS or SysML modeler),
the software prototype processes each sentence to find
out the syntactic structures of these sentences (i.e. the
grammatical structure of each sentence). In previous
research work, minipar [10] is used in order to obtain
the grammatical structure of a sentence (syntactic
analysis). In this research work, Stanford Parser [11] is
used as it provides an updated version of minipar.
Although Parsers are used only for tagging Parts-of-

Speech (POS) [12], in this approach, the Stanford
Parser [11] is used to analyse the structure of the
requirements sentence.

3. Check Completeness of each Requirement: The result
of analysis from step 2 provides first insight on the
completeness of each sentence as well as its level of
compliance with a pattern of requirement from [3].
Each requirement is checked for completeness as
described in the work of Lamar [3]. Only requirements
passing this completeness test are forwarded to the
next step of quality measures.

4. Compute Metrics: In this step, the software prototype
calculates the metrics described in the literature
(Table-1). During this stage, the prototype finds out
about specific defects regarding to expressiveness of
each requirement. If a defect is found, then this
requirement sentence is tagged with the corresponding
defect and advice is suggested to user on how to fix it.
These metrics assessing expressiveness of a
requirement are addressing only individual
requirements regardless of their interactions with other
requirements. The additional metric proposed in this
paper (similarity metric) addresses the relations
between requirements as it basically compares number
of words in common (words, synonyms and
contexonyms) between two requirements. Based on
the work of Cheong and Shu [7], a domain specific
keyword list (example Table 2) is used to rule out such
keywords from comparison computation. For the
computation of this similarity metric, any lexical
database could be used, such as WordNet [13].
However, in this research work, the similarity metric is
implemented with the semantic atlas from Ploux et al.
as it associates a word with its set of synonyms but
also with a set of contexonyms (i.e. words often
associated together in the same sentence).

5. Requirements quality grade: Based on the quality
defects of each requirement, the software prototype
sums up the total number of the defects found in the
whole requirements file. The global result is presented
to the user describing the total number of defects and
related quality issues.

Proposed Similarity Metric:

In addition to existing metrics from literature, a new metric is
proposed in this work, as shown at the bottom of Table 1. The
proposed metric is assessing the similarity between two
requirements. This metric is adapted from the similarity
function from [14]. In [14], the similarity function is basically
computing the number of words in common between two
documents divided by the total number of words in both
documents. This similarity function is adapted as in Equation1
[6]:

 5 Copyright © 2013 by ASME

𝑠𝑖𝑚(𝐴𝑘,𝐵) = ∑ 1
1+𝑒−𝑙

.
�𝑎𝑘
𝑙 ⋂𝑏𝑖

𝑗�

�𝑎𝑘
𝑙 ||𝑏𝑖

𝑗𝑗=𝑙 (1)

In this equation, Ak and B represent two requirements, akl is a
set of compound words of size l (compound words of size l
meaning l ordered words) with l varying between 1 and the
total number of words in the requirement sentence Ak; bi

j is a
set of compound words of B with j = 1, … , m and m being the
number of words in the requirement B. �akl ⋂ bi

j� provides the
number of identical elements in akl and in bi

j.

The logistic function 1
(1+e−l)

 is used to foster requirements that
include identical compounds to a higher level. For example, if
requirement A contains “pressure regulator”, then a requirement
B containing “pressure regulator” will be given a higher value
than an answer with two separate words “pressure” and
“regulator”. The last part of the metric under the square root is
used for normalizing the results and allowing comparability
between sets of requirements. Equation 1 also includes
comparison between synonyms and contexonyms of each word
used in requirements. The sets of synonyms and contexonyms
of a word is found using the online semantic atlas
(http://dico.isc.cnrs.fr/en/index.html) developed by Ploux et al.
[15]. Additionally, before applying this similarity comparison
between requirements pair-wise, it is useful to filter out
irrelevant words from the requirements description. In [7], it is
suggested that certain keywords can retrieve an overwhelming,
and often irrelevant, number of search results. In order to limit
the number of results, it is possible to filter the keywords that
are useful in the domain considered; this is both useful for
filtering the requirements sentence and the results found. In the
context of this research, Table 2 lists the keywords that are
considered as irrelevant.

Table 2 Keywords irrelevant to filter requirements descriptions

Use Make Minimum

Do Help Describe
Learn Come Simultaneously

Set Need Within

Deploy Establish Need
Rise Maximum Example

Try Given Propose

The results of this similarity comparison can be interpreted as
follows in the case of high similarity score:

1. There is a relation between the two requirements.
2. Both requirements belong to the same category (which

is defined by the user).
3. Both requirements share a common meaning.

Therefore, based on the similarity results, it is possible to detect
relations between requirements unmentioned in the initial
requirements document. Also, it is possible to detect if a
requirement is initially classified under a wrong category. High
similarity among two requirements also reflects a high quality
of the requirements model as well as relevance between
requirements. Whereas previous quality metrics addressed
syntactic and lexical aspects of each requirement, this metric
addresses the semantic links between requirements and, thus,
the semantic quality of the requirements model. Furthermore,
this similarity metric is used for clustering different levels of
requirements classification (i.e. operational, capability, and
system level requirements). Using this metric it is possible to
categorize requirements on their specific category.

4. CASE STUDY
 Table 3 lists the individual requirements linked to the
case study.

Table 3 Case study
Requirement
code

Category Description

R0 Operational
requirement

The air defence system
shall be able to support
joint operations with
long-range capabilities

R1 Operational
requirement

The air defence should
prevent airspace
violation.

R2 Capability
requirement

The air base- 2 shall be
able to engage X
number of adversary
fighters at the same
time.

R3 Capability
requirement

The air base 2 shall have
air-lift capability

R4 System
requirement

The five stations should
be available for air
Base-2.

R5 System
requirement

20 F/A-18 Hornet
should be operated

R6 Capability
requirement

The air Base 3 shall
have long-range (X km)
air-to-ground capability.

R7 Capability
requirement

The air Base- 3 shall
provide airspace
surveillance operation.

R8 System
requirement

25 F/A-18 Hornet
should be on the system.

R9 System
requirement

Three F-15 fighters
should be on the system.

 6 Copyright © 2013 by ASME

It should be noted that this case study is part of an on-going
collaboration with a large national agency that has an
established existing requirements management approach based
on three main categories of requirements (operational,
capability, system). Operational requirements include the initial
goal, which is what is fixed to be achieved in the beginning.
Capability requirements cover such areas as networking,
protection, logistics, and administrative support. System
requirements cover such areas as personnel, materiel,
organization, and information. Each requirement is described in
English using a NL description. In this example, descriptions
voluntarily include some quality defects in order to verify the
ability of the prototype software to highlight such defect. The
requirements listed have been anonymised prior to publication
but are based on possible real-life scenarios.

5. RESULTS
 The different integrated metrics (see Table 1) used for
quality assessment implemented into the software tool give the
results as shown in Figure 2. First, the results of quality
analysis show no consistency defect between requirements.
Second, the pie chart of Figure 2 shows that 3 requirements
(30%) are complete syntactically (correct grammar) and
lexically (no expressive defects), other requirements being
defected by incompleteness (10%) or lack of expressiveness
(60%). In addition to the overall pie chart visualization of
defects in requirements model, the software prototype gives
precision on defects for each requirement (upper right frame).

Following the proposed methodology, once the quality
of requirements model is assessed and errors are suggested to
the user of the prototype, the similarity metric is applied to also
highlight potentially forgotten interactions between
requirements. This similarity metric applied pair-wise to each
requirement enables the clustering of requirements as shown in
Figure 3. This clustering also highlights potential quality
defects as for the category in which requirements belong to.
The clustering is constructed by considering only the three
requirements obtaining the highest scores in the similarity
metric (based on numerical value) as shown in Table 4. This
threshold is applied as it relates requirements with strong
common meanings.

For example, Table 4 shows that for target requirement R1,
high degree of similarity exists with requirement R0, due to the
fact that both requirements belong to operational requirements
category. Other requirements also show high similarity with

requirements from the same category. As an exception, R0 and
R6 do not belong to the same category but R6 obtains high
similarity score with R0 as it derives from R0. Plotting
requirements according to their affinity provides the results
shown in Figure 3 representing the relations between
requirements and the requirements at the interface between two
categories. It should be noticed that this similarity metric can
also be used to reproduce the requirement model as a network
of requirements.

Table 4 Application of the similarity metric on the common
case study.

Target
Req.

Most
similar

2nd most
similar

3rd most
similar

Comments

R0 R6 R1 R4 R6 derives from R0.

R1 R0 R4 R7 R1 and R0
Operational
requirements.

R2 R3 R6 R7 All are capability
level requirements.

R3 R6 R7 R2 All are capability
level requirements

R4 R5 R8 R9 All are system level
requirements

R5 R8 R9 R4 All are system level
requirements

R6 R3 R7 R2 All are capability
level requirements

R7 R3 R6 R2 All are capability
level requirements

R8 R5 R9 R0 R8, R5, R9 are
system level
requirements, all
three derive from R0.

R9 R8 R5 R4 All are system level
requirements

 7 Copyright © 2013 by ASME

Figure 2 Snapshots of the software tool: quality grade

Figure 3 Result of proposed methodology

6. CONCLUSION AND FUTURE WORK
 Contributions of this research work have been
implemented in a prototype software tool and tested on several
case studies; one of case study is presented in this research
work. This work enhances existing requirements analysis
approaches in several directions. The research work has
integrated and developed new quality evaluation metrics both
for individual requirements and list of requirements.
Furthermore, the work has provided a concrete similarity metric
allowing the classification of requirements into predefined
categories, as well as the possibility to highlight potential links
between requirements belonging to different categories. The
approach proposed in this paper for clustering requirements
suggests the possibility to treat requirements documents with
other clustering techniques used in data mining (K-means,
fuzzy C-means, Hierarchical, Mixture of Gaussians, etc.).
However, the structure of data in requirements documents is
specific and, requirements categories are usually predefined by
users. In addition, requirements may belong to more than one
category at the same time. Nevertheless, the strong connection

 8 Copyright © 2013 by ASME

between the proposed approach and data mining techniques
will be further investigated in future research work. The corpus
is used for similarity metrics, is based on text extracted from
general newspapers, making it a very general corpus that may
lead to some errors if the approach is be applied to hundreds of
cases. In order to improve the accuracy and avoid such errors,
future work will try to develop, a corpus containing domain
specific synonym and contexonym databases. Proposed metrics
also can be useful for assessing the analysis of impact of
changes within requirements [16, 17].

ACKNOWLEDGMENTS
 The work presented in this document is the result of a
collective work. The authors of the document would like to
thank the different persons cited below for the constant
involvement and support that they have provided during this
research work. Special thanks to Lieutenant Colonel (GS) Jyri
Kosola, Director of the FDF Technical Research Centre, Master
of Science Aleksi Päiväläinen from FDF, Doctor Matias Aunola
from FDF, Professor Pekka Appelqvist from Finnish Ministry
of Defence. Special thanks also to Kati Vuorenvirta from
Finnish Ministry of Defence for her practical helps in dealing
with the administrative aspects of the project.

REFERENCES

[1] CHAOS chronicles Standish group “The Analysis of IT
Project Success: Understanding Previous Performance to
Create Future Prosperity,” URL: www.mgmiller.co.uk/
files/report.pdf

[2] G. Lami: Quars: A tool for analyzing requirement (cmu/
sei-2005-tr-014). Tech. rep., Software Engineering
Institute, Carnegie Mellon University (2005). URL: http://
www.sei.cmu.edu/library/abstracts/reports/05tr014.cfm

[3] C. Lamar,.: Linguistic analysis of natural language
engineering requirements. Master’s thesis, Clemson
University (2009).

[4] C. Lamar and G. M. Mocko "Linguistic Analysis of
Natural Language Engineering Requirement Statements,"
in TMCE 2010, Ancona, Italy, 2010.

[5] V. Berzins, C. Martell, Luqi and P. Adams, "Innovations in
Natural Language document Processing for Requirements
Engineering," Monterey Workshop 2007, pp. 125-146,
extraction 2008.

[6] F. Christophe, F. Mokammel, T. Nguyen, E. Coatana, M.
BaKhouya, A. Bernard: “A methodology sup-porting
syntactic, lexical and semantic clarification of
requirements in systems engineering”. International
Journal of Product Development (2013). Accepted for
publication.

[7] Cheong, H., Shu, L.: “Automatic of causally related
functions from natural language text for biomimetic
design.” In Proceedings of the Computers and Information
in Engineering conference, IDETC/CIE 2012. Chicago,
USA (2012).

[8] IBM Rational DOORS Managing Rational DOORS
Release 9.2 URL: http://publib.boulder.ibm.com/infocenter
/rsdp/v1r0m0/topic/com.ibm.help.download.doors.doc/pdf
92/managing_doors.pdf

[9] Lash A., Murray K., Mocko G., “Natural language
processing applications in requirements engineering.”
ASME 2012 International Design Engineering Technical
Conferences & Computers and Information in Engineering
Conference.

[10] Lin, D. (1998) Dependency-based Evaluation of
MINIPAR. Workshop on the Evaluation of Parsing
Systems, Granada, Spain

[11] D. Klein and C. D. Manning, "Accurate Unlexicalized
Parsing," in 41st Meeting of the Association for
Computational Linguistics, 2003.

[12] M. G. Georgiades, A. S. Andreou and C. S. Pattichis, "A
requirements engineering methodology based on natural
language syntax and semantics," in 13th IEEE Internation
Conference on Requirements Engineering, 2005.(POS
Tagging).

[13] G. A. Miller, "WordNet: A Lexical Database for English,"
Communications of the ACM, vol. 38, no. 11, pp. 39-
41,1995.

[14] Johan Natt och Daga, Björn Regnell, Pär Carlshamre,
Michael Andersson, and Joachim Karlsson. A feasibility
study of automated natural language requirements analysis
in market-driven development. Requirements Engineering,
7:20 – 33, 2002.

[15] S. Ploux, A. Boussidan, Hyungsuk Ji.: “The semantic
atlas: an interactive model of lexical representation”. In
Proceedings of the ELRA Conference 2010. Valletta, Malta
(2010)

[16] B. Abma : “Evaluation of requirements management tools
with support for traceability based change impact
analysis.” Master’s thesis, University of Twente (2009).

[17] F. Mokammel, E. Coatanea, M. Bakhouya, S. Nonsiri
“Impact Analysis of Graph-based Requirements Models
using PageRank Algorithm” Submitted and accepted in
IEEE International Systems Conference is Engineering of
Complex Systems, 2013.

	IDETC/CIE 2013
	August 4-7, 2013, Portland, Oregon, USA
	DETC2013-13708
	Towards an Approach for Evaluating the Quality of Requirements
	Faisal Mokammel, Eric Coatanea, Francois Christophe, Mohamed Ba Khouya, Galina Medyna
	Abstract
	Table 1 Overview of the metrics considered and implemented in the prototype software
	Figure 1 Architecture of the software tool developed
	Table 3 Case study
	ACKNOWLEDGMENTS
	References

